CRVW3-NE Three-Channel Vibrating Wire Datalogger without Enclosure
Vibrating Wire Data Logger
Using patented VSPECT™ technology
weather applications water applications energy applications gas flux and turbulence applications infrastructure applications soil applications

Overview

The CRVW3-NE is a three-channel vibrating wire data logger. It is designed to be an independent data logger, or you can use it as a reliable component in your larger data acquisition system. The CRVW3-NE has multiple communication options and a power regulator for easy solar panel and battery connection.

The CRVW3-NE and the CRVW3 are similar products that share the same electronic components. The main difference between them is that the CRVW3-NE allows you to select the enclosure and battery, whereas the CRVW3 includes an environmental enclosure and battery as a complete system.

The VSPECT technology is protected under U.S. Patent No. 7,779,690.

Read More

Benefits and Features

  • Reads and stores data from one to three vibrating wire sensors
  • Charge regulator included for solar panel connection
  • Simple configuration interface
  • Compatible with many existing Campbell Scientific data acquisition networks
  • PakBus router/radio capabilities
  • User-selectable battery and enclosure options

Images

CRVW3-NE datalogger
CRVW3-NE datalogger
CRVW3-NE datalogger
CRVW3-NE datalogger
CRVW3-NE datalogger
CRVW3-NE-RF412 (datalogger with RF412 radio)
CRVW3-NE-RF412 (datalogger with RF412 radio)
CRVW3-NE-RF412 (datalogger with RF412 radio)
CRVW3-NE-RF452 (datalogger with RF452 radio)

Detailed Description

The CRVW3-NE uses vibrating wire spectral-analysis technology (VSPECT) to provide the best measurement possible for vibrating wire sensors. VSPECT observes the incoming sensor signal, performs a Fourier transform and a spectral analysis (transforming the time series into individual sinusoidal components in the frequency spectrum), and determines the sensor frequency by identifying the strongest signal in the acceptable range while filtering out environmental and electrical noise.

The CRVW3-NE provides the following data: the resonant sensor frequency, thermistor resistance for temperature calculation, and diagnostic values to help determine the validity of the frequency measurement.

Note: The CRVW3-NE requires Device Configuration Utility (DevConfig) v 2.10 or later. When radio options are used, the CRVW3-NE requires LoggerNet v 4.3 or later.

Specifications

-NOTE-
  • All CRVW3-NE dataloggers are tested and guaranteed to meet the following electrical specifications in a -40° to +70°C non-condensing environment.
  • The base -NA option and -RF422 option are CE approved, but the -RF451,
    -RF452, -RF407, -RF412, and -RF427 options are not CE approved.
Operating Temperature Range
  • -40° to +70°C
  • Non-condensing environment
Processor ST ARM CORTEX-M4 (32-bit with hardware FPU, running at 144 MHz)
Data Storage 16 MB serial flash, up to 420,000 records (single channel), up to 160,000 records (3 channels)
Real-Time Clock Accuracy ±3 min. per year
Measurement Interval Range 1 s to 1 day
USB Micro B Direct connect to PC (supplies power for configuration and data collection), 2.0 full speed, 12 Mbps
Configuration Software configurable, no programming required
Compliance RoHS
Warranty One year against defects in materials and workmanship
Static Vibrating Wire Measurements Supported
Mounting Mounting holes for easy mounting and installation in a Campbell Scientific enclosure
Dimensions 18.4 x 12.7 x 4.5 cm (7.25 x 5.0 x 1.75 in.)
Weight 0.36 kg (0.8 lb)

Power

Charge Terminal 16 to 28 Vdc (from solar panel or dc power converter). Typical applications use 10 to 20 W panels.
Battery Terminal Sealed, rechargeable, lead-acid batteries. Typical applications use 7, 12, and 24 Ah rechargeable batteries.
Current Drain
  • 1 mA (no radio, basic operation)
  • ~37.5 mA/s (each time a channel is measured)

Measurements

Channel Count 3 vibrating wire (VW) and 3 thermistor/RTD (temperature) measurements
Measurement Speed 1 s per sensor (VW and temperature)

Measurements - Vibrating Wire

Measurement Excitation Options 2 V (±1 V), 5 V (±2.5 V),12 V (±6 V)
Measurement (Frequency) Resolution 0.001 Hz RMS (-40° to +70°C)
Time-series Basic Resolution 24-bit ADC
Measurement Accuracy ±0.005% of reading (-40° to +70°C)
Measurement Method VSPECT (Spectral Analysis), U.S. Patent No. 7,779,690, includes diagnostic data

Measurements - Temperature (Resistance)

-NOTE- Thermistor or RTD resistance can be scaled to Temperature (Deg C) per manufacturer specifications. The resulting temperature can be used as a correction factor for the sensor’s output.
Measurement Method Half-bridge ratiometric, 24-bit ADC, built-in completion resistor 4.99 kΩ 0.1%
Thermistor Precision 0.020 Ω RMS @ 3000 Ω (~0.00015 °C RMS for most vibrating wire thermistors)
Accuracy ±0.15% of reading (-40° to +70°C)

-RF407 Option

Internal Radio Description 5 to 250 mW, user selectable; 902 to 928 MHz license-free band, frequency hopping spread-spectrum radio
Radio Repeater Devices with the -RF407 option can be set up as a radio repeater.
Where Used US, Canada
Compliance Information
  • MCQ-XB900HP (United States FCC Part 15.247)
  • 846A-XB900HP (Industry Canada ([IC])
  • RCPDIXB15-0672-A2 (Mexico IF)

-RF412 Option

Internal Radio Description 5 to 250 mW, user selectable; 915 to 928 MHz license-free band, frequency hopping spread-spectrum radio
Radio Repeater Devices with the -RF412 option can be set up as a radio repeater.
Where Used Australia
Compliance Information
  • ACMA RCM
  • MCQ-XB900HP (United States FCC Part 15.247)
  • 1846A-XB900HP (Industry Canada [IC])

-RF422 Option

Internal Radio Description 2 to 25 mW, user selectable; 863 to 870 MHz license-free band, frequency hopping spread-spectrum radio
Where Used Europe and some of Asia (ETSI)
EU Conformity View the EU Declaration of Conformity in the Documents section of the web page.

-RF427 Option

Internal Radio Description 5 to 250 mW, user selectable; 905/920 MHz license-free band, frequency hopping spread-spectrum radio
Radio Repeater Devices with the -RF427 option can be set up as a radio repeater.
Where Used Brazil
Compliance Information 08335-17-10644 Brazil (ANATEL standards in Resolution No. 506)

-RF452 Option

Internal Radio Description 10 to 1,000 mW, user selectable; 902 to 928 MHz license-free band, frequency hopping spread-spectrum radio
Radio Repeater Devices with the -RF452 option can be set up as a radio repeater.
Where Used US, Canada, Australia
Compliance Information
  • KNYAMM0921TT (United States FCC ID)
  • 2329B-AMM0921TT (Canada [IC])

Compatibility

Sensors

The CRVW3-NE Vibrating Wire Datalogger is capable of measuring the most common vibrating wire sensors including, but not limited to, strain gages, piezometers, pressure transducers, tiltmeters, crackmeters, and load cells. The CRVW3-NE has three sensor inputs; each sensor input includes a vibrating wire sensor connection and a thermistor connection. The channels are easily configured for traditional sensors. Individual channels can be adjusted to read only the vibrating wire sensor, or they may be turned off completely.

Network Considerations

The CRVW3-NE can be ordered with several wireless communication options. The following table illustrates wireless communications compatibilities in terms of networks.

CRVW3-NE Network Compatibility

RF400a RF401A
RF401a
RF430a
RF407 RF411A
RF410a
RF411a
RF431a
RF412 RF416
RF432a
RF415a
RF422 RF427 RF450a
RF451a
RF452
CRVW3-NE-RF407
CRVW3-NE-RF412
CRVW3-NE-RF422
CRVW3-NE-RF427b
CRVW3-NE-RF451
CRVW3-NE-RF452

Notes: aRetired product; no longer available. 

Enclosure Considerations

The CRVW3-NE can be installed in various Campbell Scientific enclosures; mounting screws are included with the CRVW3-NE for easy installation. Compatible enclosures include the ENC10/12 and larger.

Power Considerations

The CRVW3-NE requires an external power source and has a built-in charger/regulator. The charge terminal accepts 16 to 28 Vdc. The battery terminal will charge a 12 Vdc sealed-rechargeable lead acid battery when the charge terminal receives adequate power. Typical applications utilize 10 to 20 W solar panels (SP10 and SP20) to charge 7, 12, and 24 Ah rechargeable batteries (BP7, BP12, and BP24). 

Downloads

Device Configuration Utility v.2.30 (46.9 MB) 02-10-2024

A software utility used to download operating systems and set up Campbell Scientific hardware. Also will update PakBus Graph and the Network Planner if they have been installed previously by another Campbell Scientific software package.

Supported Operating Systems:

Windows 11 or 10 (Both 32 and 64 bit)

View Update History

CRVWx Firmware v.4.04 (931 KB) 09-05-2023

Current version of the CRVWx firmware.  Requires the Device Configuration Utility to upload the firmware to the CRVWx.

View Update History

Frequently Asked Questions

Number of FAQs related to CRVW3-NE: 11

Expand AllCollapse All

  1. The CRVW3 takes approximately 1 s to measure the vibrating wire sensor and thermistor. If all three channels are measuring sensors, the CRVW3 takes approximately 3 s to measure the sensors before it is ready to begin the cycle again.

  2. Yes. The batteries can be switched at any time between the D-cell battery option and the rechargeable battery option.

  3. The communications options (such as –RF451) reflect how the CRVW3 is built during the manufacturing process. After a CRVW3 is ordered with a specific communications option, it retains that option. It is possible to turn off the wireless communications, and the CRVW3 can be deployed as a stand-alone data logger.

  4. Yes. The CRVW3 can be used as a stand-alone data logger. If the CRVW3 is not connected to a network, data is collected by connecting directly to the CRVW3 (via USB) or through a simple wireless connection, as outlined in the manual.

  5. No. The CRVW3 has built-in memory and can be configured in a variety of ways. It can measure data frequently and communicate the data at a slower rate (for example, measure every 10 minutes and communicate the results once per day). The CRVW3 can also communicate data after each measurement is taken.  The ability to configure the communications on a network to an application's specific needs allows the user to better manage the power consumption on the CRVW3, as well as on the base data logger.

  6. Not much. The CRVW3 needs to be configured, installed, and wired at the site. These steps have been outlined in the Quick Deploy guide that ships with the CRVW3 and is also available for download on this website. The manual is a more detailed resource to address any installation questions.

  7. No. The CRVW3 is designed to be a simple, quickly deployed system with minimal modifications. The simple design of the CRVW3 does not enable it for use with multiplexers. When an application requires multiplexers, consider using a CR6 Measurement and Control Datalogger instead.

  8. Yes. The CRVW3 is a PakBus device that can communicate with other PakBus data loggers. The neighbor data logger requires a radio device compatible with the CRVW3 radio option. If a CRVW3-RF451 model is used, the neighbor device needs to have an RF450 or RF451 radio installed to enable wireless communications. After connecting to the first neighbor, PakBus routing can be used to reach other PakBus devices available to that neighbor via any type of active communications link (TCP/IP, WiFi, etc.) Network Planner is a tool within LoggerNet used to design a network and explore how devices communicate.

  9. There are multiple communication options depending on how the CRVW3 is ordered. All CRVW3 devices can communicate data and be configured using the built-in USB connection. If a CRVW3 is ordered with a wireless communication option, it can also communicate the data wirelessly to a PC or another data logger.

  10. A practical maximum is to connect one multiplexer per every two control terminals on the data logger. Control terminals can be shared between multiplexers to increase the number of connected multiplexers. Sharing terminals, however, requires more complex wiring and programming. Users who would like to connect more than one multiplexer per every two control terminals are advised to contact a sales or support engineer at Campbell Scientific for assistance.


Privacy Policy Update

We've updated our privacy policy.  Learn More

Cookie Consent

Update your cookie preferences.  Update Cookie Preferences