The CSAT3A 3-D Sonic Anemometer is the 3-D sonic anemometer of choice for eddy-covariance measurements. It has an aerodynamic design, a 10 cm vertical measurement path, operates in a pulsed acoustic mode, and withstands exposure to harsh weather conditions. Three orthogonal wind components (ux, uy, uz) and the speed of sound (c) are measured and output at a maximum rate of 50 Hz. The CSAT3A head is operated by the EC100 electronics, which also control either an EC150 or EC155 gas analyzer.
Measurements can be triggered from two sources:
The SDM protocol supports a group trigger for synchronizing multiple CSAT3As.
Read MoreThe CSAT3A is an optional component of an EC150 open-path or EC155 closed-path CO2/H2O gas analyzer. It attaches to a common mounting bracket and connects to the gas analyzer's EC100 electronics module.
Measurement Path Length |
|
Path Angle from Horizontal | 60° |
Construction | Sealed sonic transducers and electronics |
Anemometer Head Materials | Stainless-steel tubing |
Electronics Box Materials | Welded aluminum |
Operating Temperature Range | -30° to +50°C |
Voltage Supply | 10 to 16 Vdc |
Current |
|
Digital SDM Output Signal | CSI 33.3 k baud serial interface for data logger/sensor communication. (Data type is 2-byte integer per output plus 2-byte diagnostic.) |
Support Arm Diameter | 1.59 cm (0.63 in.) |
Transducer Diameter | 0.64 cm (0.25 in.) |
Transducer Mounting Arm Diameter | 0.84 cm (0.33 in.) |
Anemometer Head Dimensions | 47.3 x 42.4 cm (18.6 x 16.7 in.) |
Anemometer Head Weight | 1.7 kg (3.7 lb) |
Measurements |
|
Outputs |
ux, uy, uz, c (ux, uy, uz are wind components referenced to the anemometer axes; c is speed of sound.) |
Speed of Sound | Determined from three acoustic paths; corrected for crosswind effects. |
Measurement Rate | Programmable from 1 to 60 Hz, instantaneous measurements. Two over-sampled modes are block averaged to either 20 Hz or 10 Hz. |
Output Bandwidths | 5, 10, 12.5, or 20 Hz |
Output Rate | 10, 20, 25, or 50 Hz |
Measurement Resolution |
|
Offset Error |
|
Gain Error |
|
Rain | Innovative ultrasonic signal processing and user-installable wicks considerably improve the performance of the anemometer under all rain events. |
Digital USB and RS-485 Output Signal |
|
Baud Rate | 230400 bps (maximum) |
Data Type | Comma-delimited ASCII |
SDM, USB, & RS-485 Digital Outputs Reporting Range |
|
Full-Scale Wind | ±65.535 m/s autoranging between four ranges (Least significant bit is 0.25 to 2 mm/s.) |
Speed of Sound | 300 to 366 m/s (-50° to +60°C) Least significant bit is 1 mm/s (0.002°C). |
Note: The following shows notable compatibility information. It is not a comprehensive list of all compatible or incompatible products.
Number of FAQs related to CSAT3A: 22
Expand AllCollapse All
Ultrasonic anemometers are unable to make measurements if the sonic path is blocked. The path may become blocked by water that puddles on the lower transducer face or droplets that hang from the upper transducers. Sonic wicks, which come with all sonics, can be placed on the transducers to wick away moisture from the faces of the transducers. Ensure that these wicks are removed during cold conditions to prevent ice from building up around them.
Campbell Scientific does not offer any mounting booms or hardware that enable easy and frequent positioning of the sonic anemometer sensor head. This type of hardware must be provided by the user.
Yes. If the matching layer is damaged or missing, return the sonic anemometer to the factory for repair. Follow the steps listed on our Repair and Calibration page to request a return material authorization (RMA) number.
The CSAT3A or CSAT3B is calibrated over the temperature range of -30° to +50°C. The sonic anemometer operating temperature range can be shifted by 10 degrees to cover the range of -40° to +40°C. For low-temperature applications, it may be more appropriate to consider a heated version of our sonic anemometers.
The instrument will continue to operate outside the calibrated temperature range until the signal becomes too weak; however, the proper calibration will not be applied to the measurements because the calibration file only spans the specified temperature range.
The CSAT3A, CSAT3AH, CSAT3B, and CSAT3BH are calibrated over temperature for the effects of transducer delays on the wind speed, and to a lesser extent, for the speed of sound measurements.
There is no NIST-traceable standard for ultrasonic anemometers.
The CSAT3/3A/3AH calibration applies a correction for transducer delay over temperature. Transducer delays cause an offset in the wind speed measurement, and to a lesser extent, an offset in the speed of sound measurement.
The CSAT3/3A/3AH speed of sound easement is corrected for the effects of wind blowing normal to the sonic path.
The sonic anemometer offset specification is ±8 cm/s. Therefore, it cannot be used in an application where the expected wind speed is in the range of ±5 cm/s.
No. The sonic anemometer does not report time with the wind measurements. A time stamp will be assigned to the wind data by the data-acquisition system—either a data logger or a PC.
The CSAT3A, CSAT3AH, CSAT3B, and CSAT3BH—like other sonic anemometers—measure wind speed along the sonic path using ultrasonic signals. If the salt spray blocks the sonic path, the sonic anemometer will not be able to make measurements. The same is true if a thick layer of salt is deposited on the transducer faces.
We've updated our privacy policy. Learn More
Update your cookie preferences. Update Cookie Preferences